МИНИСТЕРСТВО ОБРАЗОВАНИЯ ПЕНЗЕНСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПЕНЗЕНСКОЙ ОБЛАСТИ «МНОГОПРОФИЛЬНАЯ ГИМНАЗИЯ №13»

PACCMOTPEHO

На заседании кафедры

Протокол № 1 от 28.08.2025г.

СОГЛАСОВАНО

Педагогическим советом

ГАОУ ПО «Многопрофильная гимназия № 13» Протокол № 12 от 29.08.2025г.

УТВЕРЖДАЮ

Директор ГАОУ ПО

«Многопрофильная гимназия N_2

13»

Паньженский Е.В. Приказ № 158 от 01.09.2025 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Введение в информатику»

для обучающихся 6 классов

Пояснительная записка

Статус документа

Рабочая программа учебного предмета «Введение в информатику» составлена на основе образовательной программы основного общего образования ГАОУ ПО «Многопрофильная гимназия № 13» и на основе Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО).

Программа учебного предмета «Введение в информатику» для основной школы требованиями Федерального соответствии c: государственного образовательного стандарта основного общего образования (ФГОС ООО); требованиями освоения основной образовательной программы (личностным, результатам метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для основного общего образования. В ней соблюдается преемственность с федеральным государственным образовательным стандартом начального общего образования; учитываются возрастные и психологические особенности школьников, обучающихся на ступени основного общего образования, учитываются межпредметные связи, логики учебного процесса и возрастных особенностей обучающихся 6-го класса.

Общая характеристика учебного предмета

Информатика — это естественнонаучная дисциплина о закономерностях протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий — одного из наиболее значимых технологических достижений современной цивилизации. Вместе с математикой, физикой, химией, биологией курс информатики закладывает основы естественнонаучного мировоззрения.

Информатика имеет большое и все возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие предметные знания и способы деятельности (включая использование средств ИКТ), освоенные обучающимися на базе информатики, находят применение как в рамках образовательного процесса при изучении других предметных областей, так и в иных жизненных ситуациях, становятся значимыми для формирования качеств личности, т. е. ориентированы на формирование метапредметных и личностных результатов. На протяжении всего периода становления школьной информатики в ней накапливался опыт формирования образовательных результатов, которые в настоящее время принято называть современными образовательными результатами.

Одной из основных черт нашего времени является всевозрастающая изменчивость окружающего мира. В этих условиях велика роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе, информационных. Необходимость подготовки личности к быстро наступающим переменам в обществе требует развития разнообразных форм мышления, формирования у учащихся умений организации собственной учебной деятельности, их ориентации на деятельностную жизненную позицию.

В содержании курса информатики основной школы целесообразно сделать акцент на изучении фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализовать в полной мере общеобразовательный потенциал этого курса.

Курс информатики основной школы является частью непрерывного курса информатики, который включает в себя также пропедевтический курс в начальной школе и обучение информатике в старших классах (на базовом или профильном уровне). В настоящей программе учтено, что сегодня, в соответствии с Федеральным

государственным стандартом начального образования, учащиеся к концу начальной школы должны обладать ИКТ-компетентностью, достаточной для дальнейшего обучения. Далее, в основной школе, начиная с 5-го класса, они закрепляют полученные технические навыки и развивают их в рамках применения при изучении всех предметов. Курс информатики основной школы, опирается на опыт постоянного применения ИКТ, уже имеющийся у учащихся, дает теоретическое осмысление, интерпретацию и обобщение этого опыта.

Место курса в учебном плане

Согласно учебному плану ГАОУ ПО «Многопрофильная гимназия №13 г. Пензы» на преподавание учебного предмета «Введение в информатику» в 6 классе отводится 1 час в неделю (34 часа в год).

Цели обучения:

- формирование общеучебных умений и навыков на основе средств и методов информатики и ИКТ, в том числе овладение умениями работать с различными видами информации, самостоятельно планировать и осуществлять индивидуальную и коллективную информационную деятельность, представлять и оценивать ее результаты;
- умение осуществлять совместную информационную деятельность, в частности при выполнении учебных проектов;
 - формирование общеучебных понятий объект, система, модель, алгоритм и др.;
- повышение своего образовательного уровня и уровня готовности к продолжению обучения с использованием ИКТ.
- воспитание ответственного и избирательного отношения к информации; развитие познавательных, интеллектуальных и творческих способностей учащихся.

Задачи обучения:

- показать учащимся роль информации и информационных процессов в их жизни и в окружающем мире;
- организовать работу в виртуальных лабораториях, направленную на овладение первичными навыками исследовательской деятельности, получение опыта принятия решений и управления объектами с помощью составленных для них алгоритмов;
- организовать компьютерный практикум, ориентированный на: формирование умений использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации (работа с текстом и графикой в среде соответствующих редакторов);
- овладение способами и методами освоения новых инструментальных средств; формирование умений и навыков самостоятельной работы; стремление использовать полученные знания в процессе обучения другим предметам и в жизни;

Личностные, метапредметные и предметные результаты освоения учебного предмета «Введение в информатику»

Личностные результаты - это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- развитие алгоритмического мышления;\
- формирование информационно-правовой культуры, соблюдения авторского права, уважения к частной информации и информационному пространству;
- умение создавать и поддерживать индивидуальную информационную среду, обеспечивать защиту значимой информации и личную информационную безопасность, развитие чувства личной ответственности за качество окружающей информационной среды;
- приобретение опыта использования информационных ресурсов общества и электронных средств связи в учебной и практической деятельности; освоение типичных ситуаций по настройке и управлению персональных средств ИКТ, включая цифровую бытовую технику;
- умение осуществлять совместную информационную деятельность, в частности при выполнении учебных проектов;
- повышение своего образовательного уровня и уровня готовности к продолжению обучения с использованием ИКТ.

Метапредметные результаты - освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- формирование умений использования методов и средств информатики: моделирования, формализации и структурирования информации; компьютерного эксперимента при исследовании различных объектов, явлений и процессов;
- овладение навыками постановки задачи при полной и неполной имеющейся информации;
- формирование умения планирования деятельности;
- контроль, анализ, самоанализ результатов деятельности;
- коррекция деятельности: внесение необходимых дополнений и корректив в план действий;
- умение выбирать источники информации, необходимые для решения задачи;
- умение выбирать средства ИКТ для решения задач из разных сфер человеческой деятельности;
- моделирование преобразование объекта из чувственной формы в знаковосимволическую модель;
- выбор языка представления информации в модели в зависимости от поставленной задачи;
- преобразование модели изменение модели с целью адекватного представления объекта моделирования;
- формирование умений представления информации в виде информационных моделей различных видов на естественном, формализованном и формальном языках.

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- овладение видами информационной учебной деятельности и компетенциями, необходимыми для успешного обучения и повседневной жизни;
- формирование механизмов мышления, характерного для информатики и информационной деятельности.

В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры;
- формирование представления о компьютере как универсальном устройстве обработки
- информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать
- алгоритм конкретного исполнителя; формирование знаний алгоритмических конструкциях, логических значениях операциях; знакомство одним ИЗ языков программирования основными алгоритмическими структурами — линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения
- выбирать способ представления данных в соответствии с поставленной задачей —
- таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Требования к уровню подготовки учащихся

Личностные универсальные учебные действия обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения) и ориентацию в социальных ролях и межличностных отношениях. Применительно к учебной деятельности выделяют два вида действий:

- 1) действие смыслообразования, т. е. установление учащимися связи между целью учебной деятельности (результатом учения) и ее мотивом (тем, что побуждает деятельность, ради чего она осуществляется); ученик должен задаваться вопросом о том, «какое значение, смысл имеет для меня учение», и уметь находить ответ на него;
- 2) действие нравственно-этического оценивания усваиваемого содержания, исходя из социальных и личностных ценностей, обеспечивающее личностный моральный выбор.

Регулятивные универсальные учебные действия обеспечивают организацию учащимся своей учебной деятельности; к ним относятся:

- 1) целеполагание как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимся, и того, что еще неизвестно;
- 2) планирование определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
- 3) прогнозирование предвосхищение результата и уровня усвоения, его временных характеристик; контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;
- 4) коррекция внесение необходимых дополнений и корректив в план и способ действия в случае расхождения эталона, реального действия и его продукта;
- 5) оценка выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения;
- 6) волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию к выбору в ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные универсальные учебные действия включают действия исследования, поиска и отбора необходимой информации, ее структурирования; моделирования изучаемого содержания; логические действия и операции; способы решения задач. Познавательные УУД разделяются на группы:

- 1) общеучебные универсальные действия самостоятельное выделение и формулирование познавательной цели; структурирование знаний; умение адекватно, осознанно и произвольно строить речевое высказывание в устной и письменной речи; действие со знаковосимволическими средствами (замещение, кодирование, декодирование, моделирование); смысловое чтение как осмысление цели чтения и выбор вида чтения в зависимости от цели;
- 2) логические действия выбор оснований, критериев для сравнения, оценки и классификации объектов; синтез как составление целого из частей; подведение под понятия, распознавание объектов; выдвижение гипотез и их доказательство; 3) действия постановки и решения проблемы формулирование проблемы; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера.

Коммуникативные универсальные учебные действия обеспечивают социальную компетентность и сознательную ориентацию учащихся на позиции других людей (прежде всего, партнера по общению или деятельности), умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Планируемые результаты изучения предмета «Введение в информатику»

Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования уточняют и конкретизируют общее понимание личностных, метапредметных и предметных результатов как с позиции организации их достижения в образовательном процессе, так и с позиции оценки достижения этих результатов.

Раздел 1. Информационное моделирование

Выпускник научится:

- •понимать сущность понятий «модель», «информационная модель»;
- •различать натурные и информационные модели, приводить их примеры;
- •«читать» информационные модели (простые таблицы, круговые и столбиковые диаграммы, схемы и др.), встречающиеся в повседневной жизни;
- •перекодировать информацию из одной пространственно-графической или знаковосимволической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- •строить простые информационные модели объектов из различных предметных областей.

Ученик получит возможность:

- •сформировать начальные представления о о назначении и области применения моделей; о моделировании как методе научного познания;
- •приводить примеры образных, знаковых и смешанных информационных моделей;
- •познакомится с правилами построения табличных моделей, схем, графов, деревьев;
- •выбирать форму представления данных (таблица, схема, график, диаграмма, граф, дерево) в соответствии с поставленной задачей.

Раздел 2. Алгоритмика

Выпускник научится:

- •понимать смысл понятия «алгоритм», приводить примеры алгоритмов;
- •понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; приводить примеры формальных и неформальных исполнителей;
- •осуществлять управление имеющимся формальным исполнителем;
- •понимать правила записи и выполнения алгоритмов, содержащих алгоритмические конструкции «следование», «ветвление», «цикл»;
- •подбирать алгоритмическую конструкцию, соответствующую заданной ситуации;
- •исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- •разрабатывать план действий для решения задач на переправы, переливания и пр.;

Выпускник получит возможность:

- •исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- •по данному алгоритму определять, для решения какой задачи он предназначен;
- •разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции и вспомогательные алгоритмы.

Основное содержание учебного предмета «Введение в информатику»

Структура содержания общеобразовательного предмета «Введение в информатику» в 6 классах основной школы может быть определена следующими укрупнёнными тематическими блоками (разделами):

- информационное моделирование;
- алгоритмика.

Раздел 1. Информационное моделирование

Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов.

Модели объектов и их назначение. Информационные модели. Словесные информационные модели. Простейшие математические модели.

Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы. Табличное решение логических задач.

Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных.

Многообразие схем. Информационные модели на графах. Деревья.

Раздел 2. Алгоритмика

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей.

Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках математики и т.д.).

Составление алгоритмов (линейных, с ветвлениями и циклами) для управления исполнителями Чертёжник, Водолей и др.

Тематическое планирование по учебному предмету «Введение в информатику» на 2023 – 2024 учебный год 6 класс

Учебник: Босова Л.Л. Информатика: Учебник для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2019.

	T		
Тема 1. Объекты и системы	Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов. Система и окружающая среда. Персональный компьютер как система. Файловая система. Операционная система.	 Аналитическая деятельность: анализировать объекты окружающей действительности, указывая их признаки — свойства, действия, поведение, состояния; выявлять отношения, связывающие данный объект с другими объектами; осуществлять деление заданного множества объектов на классы по заданному или самостоятельно выбранному признаку — основанию классификации; приводить примеры материальных, нематериальных и смешанных систем. Практическая деятельность: изменять свойства рабочего стола: тему, фоновый рисунок, заставку; изменять свойства панели задач; 	
Тема 2. Информационные модели	Модели объектов и их назначение. Информационные модели. Словесные информационные модели. Простейшие математические модели. Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы. Табличное решение логических задач.	 узнавать свойства компьютерных объектов (устройств, папок, файлов) и возможных действий с ними; упорядочивать информацию в личной папке. Аналитическая деятельность: различать натурные и информационные модели, изучаемые в школе, встречающиеся в жизни; 	

	Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных. Многообразие схем. Информационные модели на графах. Деревья.	 (описания); создавать многоуровневые списки; создавать табличные модели; создавать простые вычислительные таблицы, вносить в них информацию и проводить несложные вычисления; создавать диаграммы и графики; создавать схемы, графы, деревья; создавать графические модели.
Тема 3. Алгоритмика	Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей. Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках математики и т.д.). Составление алгоритмов (линейных, с ветвлениями и циклами) для управления исполнителями Чертёжник, Водолей и др.	неформальных исполнителей;

Поурочное тематическое планирование

6 класс

Номер	·			
урока		учебника		
1.	Цели изучения курса информатики. Техника безопасности и организация рабочего места. Объекты	Введение, §1		
	окружающего мира			
2.	Объекты операционной системы.	§2(3)		
3.	Файлы и папки. Размер файла.	§2(1,2)		
4.	Разнообразие отношений объектов и их множеств.	§3 (1, 2)		
	Отношения между множествами.			
5.	Отношение «входит в состав».	§3 (3)		
6.	Разновидности объекта и их классификация.	§4 (1, 2)		
7.	Классификация компьютерных объектов.	§4 (1, 2, 3)		
8.	Системы объектов. Состав и структура системы	§5 (1, 2)		
9.	Система и окружающая среда. Система как черный ящик.	§5 (3, 4)		
10.	Персональный компьютер как система.	§6		
11.	Способы познания окружающего мира.	§7		
12.	Понятие как форма мышления. Как образуются понятия.	§8 (1, 2)		
13.	Определение понятия.	§8 (3)		
14.	Информационное моделирование как метод познания.	§9		
15.	Знаковые информационные модели. Словесные (научные, художественные) описания.	§10 (1, 2, 3)		
16.	Математические модели. Многоуровневые списки.	§10 (4)		
17.	Табличные информационные модели. Правила оформления таблиц.	§11 (1, 2)		
18.	Решение логических задач с помощью нескольких таблиц. Вычислительные таблицы.	§11 (3, 4)		
19.	Графики и диаграммы. Наглядное представление процессов изменения величин и их соотношений.	§12		
20.	Создание информационных моделей – диаграмм. Выполнение мини-проекта «Диаграммы вокруг нас»	§12		
21.	Многообразие схем и сферы их применения.	§13 (1)		
22.	Информационные модели на графах. Использование графов при решении задач.	§13 (2, 3)		
23.	Что такое алгоритм	§14		
24.	Исполнители вокруг нас. Работа в среде исполнителя Кузнечик	§15		

25.	Формы записи алгоритмов. Работа в среде исполнителя Водолей	§16			
26.	Линейные алгоритмы.	§17 (1)			
27.	Алгоритмы с ветвлениями	§17 (2)			
28.	Алгоритмы с повторениями.	§17 (3)			
29.	Исполнитель Чертежник. Пример алгоритма управления Чертежником. Работа в среде исполнителя	§18 (1, 2)			
	Чертёжник				
30.	Использование вспомогательных алгоритмов. Работа в среде исполнителя Чертёжник	§18 (3)			
31.	Алгоритмы с повторениями для исполнителя Чертёжник. Работа в среде исполнителя Чертёжник				
32.	Обобщение и систематизация знаний по теме «Алгоритмика»				
Итоговое повторение					
33.	Выполнение и защита итогового проекта.				
34.	Итоговое повторение				

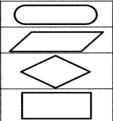
Учебно-методическое обеспечение

- 1. Босова Л.Л. Информатика: Учебник для 6 класса. М.: БИНОМ. Лаборатория знаний, 2019. 2. Материалы авторской мастерской Босовой Л.Л.

Самостоятельная работа по теме «Алгоритмы» 1 вариант

1.Закончите предложение: «Алгоритмом называется ...»

- а) нумерованный список
- б) любая последовательность команд
- в) команды, которые может выполнить человек или компьютер
- г) конечная последовательность шагов в решении задачи, приводящая от исходных данных к требуемому результату


2. Что можно считать алгоритмом?

- а) инструкцию по использованию DVD-плеера или мобильного телефона
- б) список учеников класса
- в) кулинарный рецепт
- г) перечень обязанностей дежурного по классу

3. Закончите предложение: «Блок-схема – форма записи алгоритмов, при которой для обозначения различных шагов алгоритма используются»

- а) рисунки
- б) списки
- в) геометрические фигуры
- г) формулы

4. Какие действия обозначает каждая из представленных ниже ф	игуг	?
--	------	---

5.Выполните алгоритм и запишите результат:

- 1. Прибавьте к числу 3 число 17
- 2. Вычтите 10
- 3. Умножьте на 3
- Вычтите 7

6.Укажите те задачи, которые являются чётко поставленными:

- а) Купить в магазине 300 г карамели «Раковые шейки».
- б) Прочитать рассказ В. Бианки «Музыкант».
- в) Покрасить забор.
- г) Приготовить всё необходимое для урока физкультуры.

7. Определите тип исполнителя:

- а) Мультиварка
- б) Певец
- в) Робот
- г) Повар

8.Как называют человека, группу людей, животное или техническое устройство, способных выполнять заданные команды?

- а) Исполнитель
- б) Команда
- в) Алгоритм
- г) СКИ

9.Алгоритм, записанный на языке, понятном исполнителю, называется...

а) СКИ

- б) блок-схемой
- в) программой

10.Область, обстановка, условия, в которых действует исполнитель, принято называть...

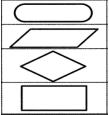
а) кругом решаемых задач

- б) средой исполнителя
- в) системой команд исполнителя
- г) режимом работы исполнителя

Самостоятельная работа по теме «Алгоритмы» 2 вариант

- **1.** Конечная последовательность шагов в решении задачи, приводящая от исходных данных к требуемому результату **это...**
- а) система команд исполнителя
- б) алгоритм
- в) команды, которые может выполнить человек или компьютер
- г) нумерованный список

2. Что можно считать алгоритмом?


Телефонный справочник

Инструкция по пользованию телефонным аппаратом

Схема метро

Правила техники безопасности

- 3. Закончите предложение: «Блок-схема форма записи алгоритмов, при которой для обозначения различных шагов алгоритма используются»
- а) рисунки
- б) списки
- в) геометрические фигуры
- г) формулы
- 4. Какие действия обозначает каждая из представленных ниже фигур?

5.Выполните алгоритм и запишите результат:

- 1. Прибавьте к числу 7 число 15
- 2. Вычтите 8
- 3. Умножьте на 2
- Вычтите 7
- 6.Укажите те задачи, которые являются чётко поставленными:
- а) Устранить неисправность.
- б) Выучить наизусть басню И. Крылова «Ворона и лисица».
- в) Купить 1 плитку шоколада «Аленка»
- г) Купить в магазине кефир, творог и другие молочные продукты.

7. Определите тип исполнителя:

- а) Будильник
- б) Велосипедист
- в) Робот
- г) Актер

8.Команды, которые может выполнить конкретный исполнитель, образуют...

- а) Команду
- б) СКИ

- в) Алгоритм
- г) Исполнитель

9.Программа – это ..., написанный на языке, понятном исполнителю.

а) СКИ

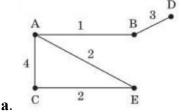
- б) алгоритм
- в) команда

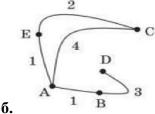
10.Область, обстановка, условия, в которых действует исполнитель, принято называть...

а) кругом решаемых задач

- б) средой исполнителя
- в) системой команд исполнителя
- г) режимом работы исполнит

Самостоятельная работа по теме «Схемы» 1 вариант


1.Граф иерархической системы называется ...

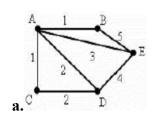

- а. корнем
- б. схемой
- в. предком
- г. деревом

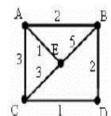
2. Расположение частей или элементов целого в порядке от высшего к низшему называется...

- а. системой
- б. иерархией
- в. графом
- г. структурой
- **3.** В таблице приведена стоимость проезда между соседними железнодорожными станциями. Числа, стоящие на пересечениях строк и столбцов таблицы, означают стоимость проезда между соответствующими соседними станциями. Если пересечение строки и столбца пусто, то станции не являются соседними. Укажите схему (взвешенный граф), соответствующий таблице.

	A	B	C	D	E
A		1	4		1
В	1			3	
C	4				2
D		3			
E	1		2		

- 4.Представление некоторого объекта с помощью условных обозначений в общих, главных чертах называется ...
 - а. схемой
 - б. диаграммой
 - в. графом
 - г. деревом
- 5. У дерева, представляющего иерархическую систему, выделяется одна главная вершина, которая называется... дерева.
 - а. корнем
 - б. листьями
 - в. потомком
 - г. предком


6. Что из перечисленного является схемой?


- а. план зрительного зала кинотеатра
- б. географическая карта страны
- в. атлас автомобильных дорог
- г. все утверждения верны
- 7. Уменьшенное изображение поверхности Земли на плоскости в той ли иной системе условных обозначений дает нам...
 - а. граф
 - б. семантическая сеть
 - в. географическая карта
 - г. чертеж

Самостоятельная работа по теме «Схемы» Вариант №2

- 1. Представление некоторого объекта с помощью условных обозначений в общих, главных чертах называется ...
 - а) схемой
 - б) диаграммой
 - в) графом
 - г) деревом
- 2. Иерархия это расположение частей или элементов целого в порядке от...
 - а) высшего к низшему
 - б) низшего к высшему
- 3. Если вершины или ребра графа характеризуются некоторой дополнительной информацией (весом), то такой граф называется:
 - а) взвешенным
 - б) ориентированным
 - в) неориентированным
 - г) простым
- 4. Наглядным средством представления состава и структуры системы является...
 - а) таблица
 - б) граф
 - в) диаграмма
 - г) словесное описание
- 5. В дереве вершины, не имеющие порождённых вершин, называются...
 - а) корнем
 - б) предком
 - в) листьями
 - г) потомком
- 6. Что из приведенных утверждений является схемой?
 - а) план квартиры
 - б) схема туристического маршрута
 - в) схема линий метро
 - г) все утверждения верны
- 7. В таблице приведена стоимость перевозок между пятью железнодорожными станциями, обозначенными буквами A, B, C, D, E. Укажите схему, которая соответствует таблице.

	A	В	C	D	Е
A		1	1	2	3
В	1				5
С	1			2	
D	2		2		4
Е	3	5		4	

